
IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 5, Issue 1, January 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.5125 104

Secure Virtualized Multi Tenancy Architecture in

Cloud Computing using H-SVM

Sowmiya.N.D
1
, Shanthi.S

2

P.G Student, Department of Computer Science and Engineering, Valliammai Engineering College1

Assistant Professor, Department of Computer Science and Engineering, Valliammai Engineering College2

Abstract: Multilateral Security concept to multi-tenancy cloud platform. It is difficult to analyse policies defined by

consumers in the same virtualization platform in order to guarantee configuration stability given that policies may have

conflicts leading to unpredictable effects. sharing means that malicious activities carried out by one tenant may affect

the reputation of another tenant .Multilateral security is just about allowing each of consumers to express their security

requirements and actually use their chosen level of security. Multilateral Security Requirements Analysis (MSRA)

consider the security and privacy interests or needs of all stakeholders related to the system.

Keywords: MSRA, H-SVM, SMM, TLB.

1. INTRODUCTION

In cloud computing, user run their programs in virtualized

system and virtual machines from different users may

share the same physical system. However, such cloud

computing based on virtualization poses a difficult

challenge to securely isolate co-tenants sharing a physical

system. Security and privacy protection is more important

take in cloud computing and virtualization security is more

important element of process in cloud computing.

In virtualized system, hypervisor, software layer creating

and managing virtual machine, is responsible for isolating

any illegal accesses across virtual machine boundaries.

The hypervisors, have increasing their better performance

and more features in code size, verify their secure
execution become too complex. If hypervisors cannot be

trusted, even a trustworthy cloud provider cannot

guarantee the protection of a virtual machine from a

malicious person or user.The secure execution of guest

virtual machine, and to guarantee the privacy of user

information, memory protection and data protection across

virtual machines is a critical component.

In the day today memory virtualization techniques, at the

highest secure, hypervisors can control both element of

memory virtualization, memory allocation, and memory

isolation by address translation. set of memory pages to be

allocated for a VM and maintains by using hypervisor and

mapping from guest-physical to machine address table is

done by using nested page table (NPT) for each virtual

machineMapping transformation of memory isolation
from memory allocation, both of which are performed by

hypervisor. the role of a hypervisor is reduce the

utilization of the memory resource allocation to the

physical Memory efficiently and effectively. Updating the

page mapping and setting the pointer to the nested page

table to schedule a virtual machine on a core. Whenever

the nested page table for virtual machine is changed, valid

update is checked by hardware. Prototype used from

implementation are hardware assist and secure virtual

machine (H-SVM).prototype implementation are done by

using system management mode (SMM).Memory

isolation is reduced by using trusted computing base that

hardware system is combined in the form of hardware and

hypervisor.

In this paper, we pretend on the protection of guest virtual
machine is based upon the securely protecting the

datacentre by using hardware processor of cloud provider.

With the restricted threat model, our goal is to minimize

memory, data and processor from the malicious user by

using hypervisor. New extensions of available hardware-

assisted virtualization in commercial processors can lead

to a significantly improved memory protection under an

untrusted hypervisor, as long as the hardware is securely

protected in the server room of the cloud provider.

Based virtual machine isolation, called hardware-assisted

secure virtual machine (H-SVM) architecture, H-SVM is

used to minimize the changes from the new available

architectural supports for virtualization. Our approach still

supports both hardware and the flexibility of software

hypervisors, but the memory protection mechanism is
decoupled from the hypervisors, and moved to the

hardware processor.

In addition to the H-SVM design, implementation is done

using the prototype system using System Management

Mode (SMM) available in new commercial systems. SMM
is designed to provide accesses to systems for remote

management and virtual machine. Using SMM, our

prototype adds security functions to the SMM layer, which

the hypervisor cannot modify or access. However, the

current SMM implementation is designed for the

management of systems processing, not for their security,

limiting the performance and functionality of our

prototype system.

2. BACKGROUND

2.1 Hardware-Assisted Virtualization

Memory isolation in the new virtualization technology is

based on the support for virtual memory with hardware

address translation and page tables. In processors, with

IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 5, Issue 1, January 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.5125 105

translation look-aside buffers (TLBs) a virtual address is

translated to a physical address. If the corresponding entry

does not exist in the TLBs, either a HW or SW-based page

table walker fetches the entry from the page table of the

current address space. we assume a hardware walker -

based page table walker in our architecture, as the

proposed architecture aims to move the improve the

responsibility of page table management from hypervisors

to HW processors. For each context switch between

address spaces, the page table register, which points to the

top-level page table entry, must be properly set, so that the
walker can traverse the correct page table.

Virtualization adds an extra translation layer. A virtual

address in guest virtual machines must be translated into a

guest-physical address (virtual physical address) like non-
virtualized systems, and the guest-physical address is

translated to a machine address in the real physical

memory. The guest OS maintains the virtual to guest-

physical address mapping in per-process page tables, and

the hypervisor maintains per- virtual machine guest-

physical to machine address mapping tables, called nested

page tables. When the processor supports only single-page

table walks designed for traditional native operating

systems, the hypervisor maintains direct translation tables,

called shadow page tables, to map virtual addresses to

machine addresses directly. With the hardware-assisted
virtualization, the hypervisor has its own address space,

but not like guest virtual machines, the hypervisor address

space uses a single translation without nested paging.

The context of each defined in a control block virtual

machine (VMCB) .Hardware-assisted virtualization also
facilitates World switch between a virtual machine and

hypervisor environments. For example, in AMD-V

architecture, the context of each virtual machine is defined

in a control block of the virtual machine (VMCB). The

hypervisor in the host mode, run the VMrun instruction to

switch to a guest VM context. The hardware processor, by

implementing micro-coded routines, hypervisor saves the

current context to a specific area and restores the VM

guest VMCB context of the processor. The VM context

contains state registration included the pointer to the table

of nested pages. If an event, you should be handled by the
hypervisor, occurs, the hardware saves the guest VM

context in VMCB, and restores the hypervisor context.

To isolate the memory of each virtual machine, a

hypervisor must protect nested page tables illegal
modifications to guest virtual machines. Guest virtual

machine cannot read or change the nested page tables. In

addition, for each context switch between virtual machines

in a core, must change the embedded hypervisor the table

on page pointer directly or by running the VMrun

instruction. The hypervisor handles memory allocation

Memory tracker applications of virtual machines, and can

allocate and deallocate pages for a virtual machine. For

such mapping changes, the hypervisor can change the

nested page table the virtual machine. Note that the

hypervisor also has access to its own memory space via

the address translation mechanism. Since the hypervisor
has full control on change nested table pages, a

compromise may hypervisor read or modify the physical

memory allocated for anyone virtual machine. A malicious

user can allocate physical memory pages already allocated

for other virtual machines to their address spaces own

hypervisor or virtual machine.

2.2 Threat Model

To protect the memory of the virtual machines, even under

threat hypervisor, the proposed mechanism allows only the

hardware (H-SVM) to validate and update nested page

tables, reducing the trusted computing base in the system

hardware. The proposed mechanism can be vulnerable to

hardware attacks, such as probing external buses or

reading DRAM power off after. However, it is assumed

that the cloud provider is trustworthy and does not

intentionally attempt to compromise the system hardware.
Reliable cloud provider protects its servers with physical

security measures such as the supplier not only has a legal

obligation not access the customer data without explicit

permission, but also has a strong commercial interest in

protecting his reputation.

TCB to protect memory function of virtual machines in the

proposal sent system does not include the hypervisor. We

assume hypervisors that are vulnerable to attack by

malicious remote guest virtual machines. The threat model

assumes an opponent with the permission of the

hypervisor root they can attempt to access the memory of

the guest virtual machines. The proposal memory system

can protect the guest VM always the opponent cannot

commit physical servers directly.

With appropriate security measures in the server room,

have access to the server room and physically

compromised systems are much more difficult to obtain

root permission for remote attacks. Not sanctity hardware

support, simplified requirements for H-SVM significantly.

H-SVM moves the minimum functionality in traditional
hypervisors for updating the page tables for nested

hardware processor. The protection mechanism of memory

in this work deals isolation between virtual machines or

from the hypervisor. No security improves guest operating

systems and applications themselves.

3. ARCHITECTURE

H-SVM improve the isolation of memory between virtual

machines by blocking direct modifications of nested page

tables for hypervisor. Nested page tables for the virtual

machines are stored in the protected memory region that

can be accessed by the H-SVM equipment. Any change in

the memory allocation for a virtual machine, Hypervisor

privilege level, applied to H-SVM to update the nested

page table for the virtual machine.

If the hypervisor is compromised, you can try to assign a

physical memory page already allocated to the address

space of a virtual machine a malicious hypervisor or

virtual machine. Before the update nested table pages, H-

SVM checks if the applicant can violate the isolation of
memory between VMs. If the physical memory Page

assign a virtual machine is canceled, H-SVM clean

deallocated page indicating all bytes of zeros.

IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 5, Issue 1, January 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.5125 106

We presents the overall architecture of H-SVM. H-SVM is

implemented either as a separate controller in the

processor chip, or may be added subroutines microcode.

These microcode routines are commonly used to

implement complex features in x86. In the remainder of

the paper, suppose an application like microcode. Nested

tables of all virtual machines are stored in protected pages

memory pages. The protected memory area is only part of

physical memory, which is accessible only by H-SVM. H-

SVM Blocks access to protected memory, even from

hypervisor, refuse requests to the page allocation protected
pages.

H-SVM maintaining several data structures, including

virtual machine background information, tables of nested

pages and a property page table in the protected memory
area. The virtual machine context several states contains

information such as address nested table top level pages,

and created encryption key to the virtual machine. VM

context information is similar to VMCB the AMD-V

architecture. Property Page Owner-table each physical

memory page, and therefore, the number of entries is

greater than the number of physical System memory

pages. Each entry corresponding a physical page, records

the property of the page. There virtual machine hypervisor

or self H SVM can be the owner of a page. If H-SVM is

the owner of a page, the page is used to the protected
memory area. The table on the page is the property used to

check if a page request map hypervisor It is valid or not.

When control is transferred to the supervisor interruptions,

the United H-SVM must keep track of the current virtual

CPU (virtual CPU) for VM context information.

After saving the VM state, H-SVM establishes page table

pointer to the page table used by the hypervisor. When the

hypervisor hours a virtual to a physical processor core, the

hypervisor H-SVM requested by the execution of a

privileged instruction, a virtual machine for placing a core.

To request scheduling, H-SVM restores the state of the

VM context information of the virtual machine, including

table pointer nested pages. The current x86 to supporting a

switching operation as the world VMrun instruction in

AMD-V. A major difference H-SVM with the current

support VMrun is that H-SVM requires context

information should not be virtual machine accessible by

the hypervisor. With H-SVM, the leading hypervisor

normal memory management operations of the virtual

machine. To create a virtual machine, we decided a set of
memory pages for the new virtual machine, and made

requests to update the nested page table newly created

VM. The hypervisor can also dismantle memory pages of

a virtual machine, often by the technique of ballooning,

but real changes occur to the nested page tables H-

SVM. The role of the H-SVM is limited only protected

update the page tables and nested before validation any

modification nested page tables. Hypervisor yet have

control over the management of memory resources

allocate virtual machine memory pages.

3.2 H-SVM Interfaces and Implementation

Hypervisors or virtual machines running special

instructions to applications H-SVM. There are four basic

interfaces to initialize virtual machine context information

to update nested page tables, and to schedule a virtual

machine.

Create VM. When a hypervisor to create a virtual machine

requests H-SVM to create a new nested page table for the

virtual machine. H-SVM virtual machine initializes the

context information, and make nested page table for the

virtual machine. After data structures are created in the

protected memory area, H-SVM returns a virtual machine

identifier hypervisor used to designate the virtual machine

created for subsequent interactions with H-SVM. H-SVM
also creates an encryption key by virtual machine, which

will used for the exchange page requested by the

hypervisor.

Delete VM. When a virtual machine hypervisor destroys
requests H-SVM to clear the table of existing nested pages

for the virtual machine. H-SVM also destroys the virtual

machine context information. H-SVM erases the memory

of the virtual machine before destroying the nested page

table. Virtual machine confidentiality is guaranteed.

Resets H-SVM the entry of the page table of the property

due to the allocation of virtual machine memory to

another. Finally, H-SVM erases the contents of virtual

machine as the encryption key by virtual machine and

virtual machine identifier.

Page map. To assign a physical page of memory to a

virtual machine, request an operation page hypervisor card

for H-SVM. A page operation of a page maps map of the

machine memory (frame) a physical page invited by

updating an entry in the table of nested pages. The key is

to isolate the memory check ownership of a physical page

of each page operation plan H-SVM. Before turning the

nested page table entry H-SVM should check the title
search page table if the physical page is owned by another

virtual machine. If another virtual machine already has

IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 5, Issue 1, January 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.5125 107

asked the physical page, operation of the card is

interrupted. When a nested page table the entry is updated

to a hypervisor virtual machine on request, the virtual

machine becomes the owner of the physical page. This

verification mechanism prevents endangered hypervisor

the creation of any illegal allocation of pages already used

by other virtual machines.

Page unmap. To designate a physical memory page a

virtual machine, the hypervisor is a page request unmap

H-SVM. H-SVM changes the corresponding nested page

table entry, and delete the contents of the memory page

before the end of the operation. H-SVM also restores

owner of the page on the property page table, marking as a

free page. With clear, the content of free pages cannot

contain customer information VM before.

Context save. When the hypervisor must program a virtual

machine a core, including information VMcontext States

Register They must be backed up and restored. The

context contains information the pointer to the table and
registration pages nested page table States. H-SVM and

should protect the context information the hypervisor.

Calls hypervisor save in the context H-SVM with a VM

ID. While H-SVM saves record says the running kernel

virtual machine in the protected memory. So hypervisor

cannot touch the context information of virtual machine.

This operation is similar to VMexit in AMD-V.

Context restore. When a virtual machine is scheduled

hypervisor context restore request H-SVM. Charges H-

SVM virtual machine general information about the basic

conditions for establishing recording. As the only H-SVM

can update the nested page table pointer and save the

states, the hypervisor cannot force a shoot VM to use a

nested table compromised pages. This operation VMrun is

similar to AMD-V.

4. PROPOSED SYSTEM

Cloud computing based on virtualization poses a difficult

challenge to securely isolate co-tenants sharing a physical

system. Even a trust worthy cloud provider cannot
guarantee the protection of a virtual machine from

malicious co-tenant. With increasing demand on cloud

computing, protecting guest virtual machines from

malicious attackers has become critical to provide secure

service. Practical design for the hardware based VM

isolation called H-SVM by using this memory protection

mechanism is decoupled from the VM and moved to

hardware processor. We implemented a prototype system

using system management mode, proving the low

complexity and feasibility.

Multilateral security technology in virtualization

environment and cloud computing environment. VPMS

architecture can allows consumer-defined configuration,

conflicts recognition and Negotiation. Multilateral

Security Architecture for Virtualization platform (VPMS)

to make multilateral security possible and usable for the
consumer, with our following efforts:

(1)Consumer-defined configuration of the security features

of VMs express security preferences.

(2)When users create, start or run a VM, conflicts can be

recognized.

(3) Negotiation can overcome the problems of differing

configurations and allow a non-violent resolution of

conflicts that will be accepted by all VMs involved.

5. CONCLUSION

In this paper, we proposed a new architecture - the

architecture VPMS using H-SVM, which derives from

ideal multilateral security and may allow the configuration

defined by the consumer, and to the recognition of conflict

and negotiation. H-SVM to isolate the memory of the

virtual machine virtualization security in present

techniques is based on the support for virtual memory with

the translation of hardware address and the table on page.
Multilateral Security Architecture for virtualization

platform (VPMS) allowing the multilateral security for

consumers to ensure the configuration given that political

stability may have conflicts leading to unpredictable

effects.

We classify the static and dynamic potential conflicts that

may arise in the platform virtualization of different

behaviors. We proposed a mechanism based on hardware

called H-SVM to isolate the memory of a secure virtual

machine even under a compromised hypervisor. Unlike

before hardware based mechanisms that support or

inviolability for an attack equipment, H-SVM simplifies

the complexity of the hardware supports significantly by

assuming a software-only threat model. We believe this

limited threat model is appropriate in the current cloud

computing environments where systems can be protected
against physical intrusions in a remote data center. Based

the H-SVM design, we implemented a prototype system

using the system management mode, which proves the low

complexity and feasibility of H-SVM.

REFERENCES

1. J. Yang and K. G. Shin, “Using hypervisor to provide data secrecy

for user applications on a per-page basis,” in Proc. 4th Int. Conf.

Virtual Execution Environ., 2008, pp. 71–80.

2. Y. Xia, Y. Liu, and H. Chen, “Architecture support for guest-

transparent VM protection from untrusted hypervisor and physical

attacks,” in Proc. IEEE 19th Int. Symp. High Perform. Comput.

Archit., 2013, pp. 246–257.

3. Z. Wang and X. Jiang, “Hyper Safe: A lightweight approach to

provide lifetime hypervisor control-flow integrity,” in Proc. IEEE

Symp. Secure. Privacy, 2010, pp. 380–395.

 4. C. A. Waldspurger, “Memory resource management in vmware esx

server,” in Proc. 5th Symp. Oper. Syst. Des. Implementation, 2002,

pp. 181–194.

5. Survey: Cloud computing “No Hype,” but fear of security and

cloud slowing adoption. (2009) [Online]. Available:

http://www.circleid.com/posts/20090226_cloud_computing_hype_s

ecurity

6. R. Ta-Min, L. Litty, and D. Lie, “Splitting interfaces: Making trust

between applications and operating systems configurable,” in Proc.

7th Symp. Oper. Syst. Des. Implementation, 2006, pp. 279–292.

7. Trusted platform module. [Online]. Available:

http://www.trustedcomputinggroup.org/developers/trusted_platform

_module, 2005.

8. G. Neiger, A. Santoni, F. Leung, D. Rodger, andR. Uhlig, “Intel

virtualization technology: Hardware support for efficient processor

virtualization,” Intel Technol. J., vol. 10, no. 03, pp. 167–178, 2006.

9. D. Lie, C. A. Thekkath, M. Mitchell, P. Lincoln, D. Boneh, J. C.

Mitchell, and M. Horowitz, “Architectural support for copy and

IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 5, Issue 1, January 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.5125 108

tamper resistant software,” in Proc. 9th Int. Conf. Archit. Support

Program. Lang. Oper. Syst., 2000, pp. 168–177.

10. S. Jin, J. Ahn, S. Cha, and J. Huh, “Architectural support for secure

virtualization under a vulnerable hypervisor,” in Proc. 44th Annu.

IEEE/ACM Int. Symp. Micro archit., 2011, pp. 272–283.

11. Kai Rannen berg. "Multilateral Security: A concept and examples

for balanced security," Proceedings of the 2000 workshop on New

security paradigms, Bally cotton, County Cork, Ireland, 2001, 151-

162.

12. S. Gilrses, B. Berendt, and Th. Santen, "Multilateral security

requirements analysis for preserving privacy in ubiquitous

environments," In Proceedings of the Workshop on Ubiquitous

Knowledge Discovery for Users at ECMLlPKDD 2006, pages 51-

64, Berlin, September 2006.

13. D. Kuhlmann, R. Landfermann, H. Ramasamy, M. Schunter, G.

Ramunno, and D. Vernizzi, "An Open Trusted Computing

Architecture: Secure virtual machines enabling user-defined policy

enforcement," Technical report, OpenTC consortium, 2006.

14. T. Garfinkel, B. Pfaff, J. Chow, M. Rosenblum, D. Boneh, C,

"Terra: A virtual machine based platform for trusted computing,"

In: Proceedings of the 19th ACM Symposium on Operating

Systems Principles (SOSP'03), pages 193-206, 2003

